INVESTIGATIONS IN THE IMIDAZOLE SERIES LXV.* SYNTHESIS OF 2-AMINOIMIDAZOLE DERIVATIVES FROM 2-HALOIMIDAZOLES

B. A. Priimenko and P. M. Kochergin

The reaction of 1-alkyl(hydroxyalkyl)-2-bromo-4,5-diphenylimidazoles with ammonia and primary and secondary amines was studied, and a new synthesis of 2-aminoimidazole derivatives was realized on the basis of 2-haloimidazoles. The starting compounds were obtained by the bromination of 1-alkyl(hydroxyalkyl)-4,5-diphenylimidazoles with bromine or by alkylation of 2-bromo-4,5-diphenylimidazole with alkyl halides, β -halo alcohols, and olefin oxides.

Several methods for obtaining 2-aminoimidazoles [2-6], 1-alkyl(aryl)-2-aminoimidazoles [2-4, 7], and 1-aryl-2-arylaminoimidazoles [3] are known. However, such a simple reaction as nucleophilic substitution of 2-haloimidazoles with an amino group was not reported until a brief communication [8] appeared.

In developing the research in [8], we have investigated the bromination of 1-methyl(β -hydroxyethyl, β -hydroxypropyl)-4,5-diphenylimidazoles (I-III) [9-12] with bromine and the alkylation of 2-bromo-4,5-diphenylimidazole (IV) [13] with alkyl halides, β -halo alcohols, and olefin oxides. The corresponding 1alkyl(β -hydroxyalkyl, β -hydroxyaralkyl)-2-bromo-4,5-diphenylimidazoles (V-IX, Table 1) were obtained. It should be noted that the same compound (VIII) is formed by the reaction of IV with both styrene chlorohydrin and styrene oxide.

The structures of V-IX were confirmed by IR spectra (the presence of an absorption band of the OH group at 3270-3280 cm⁻¹) and by alternative synthesis, in the case of VII, from the known $1-(\beta$ -hydroxy-propyl)-4,5-diphenylimidazole (II) [12].

There are indications in the literature that the hydroxyalkylation of 4,5-diphenylimidazole [12], 2chloronaphth[1,2-d]imidazole [14], and 8-chlorotheophylline [15] by unsymmetrical olefin oxides also proceeds unambiguously to form the corresponding secondary alcohols with alkyl (aryl) groups in the β -position of the ethyl group bonded to the nitrogen atom of the imidazole ring.

We further made a detailed investigation of the reaction of V-VIII with ammonia and primary and secondary amines. It was noted that this reaction does not occur at 66-120° (refluxing in methanol, ethanol, or butanol). However, at 155-185° [refluxing in dimethylformamide (DMF), excess high-boiling amine, or heating in a low-boiling solvent in an autoclave] the bromine atom is nucleophilically substituted by an amino (alkylamino, arylamino, cycloalkylamino) group to form the corresponding 1-alkyl (β -hydroxyalkyl, β -hydroxyaralkyl)-2-amino (alkylamino, arylamino, cycloalkylamino)-4,5-diphenylimidazoles (X-XXXV, Table 1). The structures of X-XXXV were confirmed by the IR spectra, in which bands of the stretching vibrations of NH and OH groups are present at 3050-3450 cm⁻¹.

Thus, as a result of this investigation, we have realized a comparatively simple synthesis of substituted 2-aminoimidazoles on the basis of 2-haloimidazoles, particularly 2-bromoimidazoles.

*See [1] for communication LXIV.

Zaporozhe State Medical Institute. S. Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical Chemistry, Moscow. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1248-1251, September, 1971. Original article submitted July 20, 1970.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

VOH ^a ,	T E	1	3280	3270	3280	1	l	1	I			0, 3310	0, 3300	0, 3280	U, 32/U	0, 0440	u, aaau	0. 3290		0, 3170		0, 3150	0, 3360), 3170	,	0, 3440), 3450	3400	·	1.1
VN H.	5											307(3070	202	202	010	1470	3100		308(307(320(308(3160	3160	316(
Vield	d/o	57—78	44-71	6067	60-71	75	6	85	72	62	78	11	73	20 20	Q/	20	202	83	74	68	72	52	78	23	51	74	69	49	62	69 69
alc., %	N	8,9	•	7.8	6.7	9.1	12.9	12,4	16,5	16,1	10,8	10,6	10,2	10,2	9,4	1 =	1,11	11.4	11,0	11,4	9,4	10,9	9,1	10,5	10,8	10,8	9 ⁰ 8	10,4	12,9	12,4
	Н	4,2		1	4.6	4 0	200	6.2	4,0	1	6,6	6,8	7,1			1.	о л 4 о) C C C C	6.6	6,3	6,1	6,0	5,9	6,3	5'5	5,2	4,6	5,7	7,4	6,9
0	υ	61,3	• 1	١	65,9	59.5	81.2	81.4	54,3	I	78,3	78,6	78,8	78,8	80,9	0 92	20,2	78.0	78,3	78,0	80,9	74,8	78,1	75,2	70.8	70,8	63,5	80.0	77,3	71,2 68,6
ound, 🏸	z	8,7	I	7,8	6,5	6 6	12,9	12,2	16,6	16,6	10,3	10,8	1,01	1,0,1	0,5		10.51	11.6	11,0	11,2	9,4	10,9	9,20	10,2	10,3	10,6	9,3	10,0	13,2	12,7
	н	4,2	I	Ι	4.5	4.2	0.0	6,4	3,7		6,4	6,9	7,0	7,1	5,0		~ c 0 0	ې م س	6,3	6,4	6,2	6,2	5,9	6,2	5,3	4,9	4,3	5,7	6,9	6,7 7,3
F	υ	61,2	1	1	65,5	59,7	80,9	81,4	54,3		0,07	10,2	202	20,02	100	76.5	80.4	77.8	77,8	78,0	80,6	74,4	78,4	75,7	70,7	70,5	63,0	79,7	77,6	71,5
	Empirical tormula	C ₁₆ H ₁₃ BrN ₂ b	C ₁₇ H ₁₅ BrN ₂ O	C ₁₈ H ₁₇ BrN ₂ O ^u	C ₂₃ H ₁₉ BrN ₂ ^e	C ₂₃ H ₁₈ BrN ₃ O ₃	C22H19N3	C ₂₃ H ₂₁ N ₃	C17H17N3O · C6H3N3O7	CI8H19N3O · C6H3N9O7	C25H25N3O	C26H27N3O	C27H29N3O		C3011271N3C	Contraction Contra	C241123(N3O - 1/2 112O C.º.H.º.N.O	C24H33N3O	C25H25N30	C ₂₄ H ₂₃ N ₃ O	C ₃₀ H ₂₇ N ₃ O	C ₂₄ H ₂₃ N ₃ O ₂	C30Hz7N3O2	C25H25N3O2	C23H20CIN3O B	C ₂₃ H ₂₀ CIN ₃ Oh	C ₂₃ H ₂₀ BrN ₃ O1	C27H23N3O	C21H23N3.1/2 H2O	C ₂₀ H ₂₁ N ₃ O · H ₂ O C ₂₁ H ₂₃ N ₃ O ₂ · H ₂ O
mp. °C	(dec.)	149—150	165-166 ^c	160-161	200-201	215-216	219-220	174—175	215-217	206-208	160-161	192 - 193	19/-198	210-210	210-219 910-990f	159 153	215-216	215-216	193-194	203 - 204	214 - 215	164 - 165	187 - 188	210-212	182-183	210-212	203-204	255-256	123-124	210-212 210-212
1	λ.		1	1	1	1	C ₆ H ₅	p-CH ₃ C ₆ H ₄	Н	CH ₃	C2H ₆	C ₃ H,	C4H ⁰			Cer 15	C.H.	m-CH _s C _k H ₄	m-CH ₃ C ₆ H ₄	p-CH ₃ C ₆ H ₄	p-CH ₃ C ₆ H ₄	p-CH ₃ OC ₆ H ₄	p-CH ₃ OC ₆ H ₄	p-C2H5OC6H4	m-CIC ₆ H ₄	p-CIC ₆ H ₄	p-BrC ₆ H ₄	α-C10H ₇	C ₅ H ₁₀ N ¹	C4HeNO C CHINJ
	2	Н	CH20H	CH (OH) CH ₃	CH (OH) C ₆ H ₅	CH (OH) C ₆ H ₄ NO ₂ -p	CH3 CH3	CH ₃	CH ₂ OH	CH ₂ OH	CH(OH) C ₆ H ₅	CH(OH) C ₆ H ₅	CH(OH)CeH	CH (OH) CH		CHUDHUCH	CH (OH) CH3	CH.OH	CH(OH)CH _s	CH ₂ OH	CH(OH)C ₆ H ₅	CH ₂ OH	CH(OH)C ₆ H ₅	CH ₂ OH	CH ₂ OH	CH ₂ OH	CH ₂ OH	CH ₂ OH	CH3	CH ₃ CH ₂ OH
,	Comp.	>	IΛ	IIΛ	VIII	IX	×	IX	XII	XIII	VIX	XV	XVI				UXX.	IIXX	XXIII	XXIV	XXV	IVXX	IIVXX	IIIVXX	XIXX	XXX	IXXX	IIXXX	IIIXXX	NXXX NXXX

TABLE 1. 2-Bromo- and 2-Aminoimidazole Derivatives

dFound &: Br 22.8. Calculated &: Br 22.4. ^eFound &: Br 19.3. Calculated &: Br 19.1. ^bFound %: Br 25.2. Calculated %: Br 25.5. ^cmp 165-166° [8].

^aThe IR spectra of mineral oil suspensions were recorded with a UR-10 spectrometer.

f mp 219-220° [8]. gFound %: Cl 9.0. Calculated %: Cl 9.1. hFound %: Cl 9.1. Calculated %: Cl 9.1. i Found %: Br 18.6. Calculated %: Br 18.4.

C₅H₁₀N is piperidino.

^kC₄H₈NO is morpholino.

We thank V. V. Kolpakova, Yu. N. Sheinker, and their co-workers for performing the microanalyses and recording the IR spectra.

EXPERIMENTAL

1-Methyl-4,5-diphenylimidazole (I) [9], $1-(\beta - hydroxyethyl)-4,5$ -diphenylimidazole (II) [10, 11], $1-(\beta - hydroxypropyl)-4,5$ -diphenylimidazole (III) [12], and 2-bromo-4,5-diphenylimidazole (IV) [13]. These compounds were prepared by methods described in the literature.

<u>1-Alkyl(β -hydroxyalkyl, β -hydroxyaralkyl)-2-bromo-4,5-diphenylimidazoles (V-IX, Table 1).</u> A) Bromine (0.031 mole) was added with stirring in the course of 30 min to a solution of 0.03 mole of I-III in 100 ml of chloroform, and the mixture was stirred at 18-20° for 4 h. The solvent was removed by vacuum distillation, the residue was dissolved in ethanol, and the solution was neutralized with ammonium hydroxide and poured into water. The precipitate was removed by filtration and washed with ether to give 57-60% of V-VII.

B) A solution of 0.02 mole of IV, 0.02 mole of NaOH, and 0.04 mole of ethylene chlorohydrin (or ethylene bromohydrin) or 0.021 mole of styrene chlorohydrin in 50 ml of 70% DMF was stirred for 12 h at $50-60^{\circ}$ and poured into water. The precipitate was removed by filtration and washed with ether to give 70-71 and 60%, respectively, of VI and VIII. Under similar conditions, V was obtained by the methylation of IV with methyl iodide (0.21 mole per 0.1 mole of IV) in ethanol in the presence of 0.1 mole of NaOH at $50-60^{\circ}$ for 5 h.

C) Pyridime (0.01-0.02 mole) and 0.06 mole of olefin oxide were added to a solution of 0.03 mole of IV in 30-40 ml of DMF, and the mixture was stirred at 60-65° for 6-8 h and worked up as described in experiment B to give 67, 70, and 75%, respectively, of VII-IX. Compound IX was similarly obtained in 44% yield, with the difference that the reaction was carried out at 15-20° in ethanol in the presence of NaOH (1 mole per 1 mole of IV). Mixtures of samples of V-VIII obtained by methods A-C melted without depression.

Compounds V-IX were colorless or pale yellow (IX) crystalline substances that were soluble in most organic solvents and insoluble in water. For analysis, the compounds were purified by crystallization from aqueous dioxane (V-VII, IX) or aqueous acetone (VIII).

1-Alkyl (β -hydroxyalkyl, β -hydroxyaralkyl)-2-amino(alkylamino, arylamino, cycloalkylamino)-4,5-diphenylimidazoles (X-XXXV, Table 1). A) A mixture of 0.01 mole of V-VIII, 0.025 mole of amine, and 50 ml of ethanol or 20-25 ml of alcoholic ammonia, methylamine, or ethylamine and 20-25 ml of ethanol was heated at 160-180° (in a 150 ml autoclave) for 8-10 h and cooled. The precipitate was removed by filtration and washed with water and ether. Evaporation of the alcohol mother liquor gave an additional amount of compound. Compounds XII-XVIII and XXXII-XXXV were isolated by pouring the reaction mixture into water.

B) A mixture of 3.4 g of VII and 10 ml of aniline or m-toluidine was refluxed for 6-8 h, the unchanged amine was removed by vacuum distillation, and the residue was washed with water and ether to give 87 and 71%, respectively, of XX and XXIII. These samples did not depress the melting points of the compounds obtained by method A.

Compounds X-XXXV were colorless or pale-yellow crystalline substances that were soluble in most organic solvents and insoluble in water. For analysis, the compounds were purified by crystallization from aqueous dioxane (X, XI, XXXIII-XXXV), aqueous acetone (XII-XVII), aqueous DMF (XVIII, XXI, XXV, XXVII, XXIX, and XXXI), aqueous ethanol (XIX, XXII, XXIV, XXVI, XXX, and (XXXII), or aqueous methanol (XX).

LITERATURE CITED

1. B.A. Priimenko and P. M. Kochergin, Khim. Geterotsikl. Soedin., 1243 (1971).

2. K. Hofmann, Imidazole and Its Derivatives, New York (1953).

- 3. Z.N. Nazarova (editor), Outline of the Chemistry of Azoles [in Russian], Izd. Rostovsk. Univ. (1965).
- 4. A. F. Pozharskii, A. D. Garnovskii, and A. M. Simonov, Usp. Khim., 35, 261 (1966).
- 5. J. Iwai and J. Jura, Japanese Patent No. 24,885; Chem. Abstr., <u>60</u>, 4154 (1964).
- 6. S. Nakamura, Pharm. Bull. Japan, 3, 379 (1955); Chem. Abstr., 50, 15897 (1956).
- 7. B.A. Tertov and V.V. Burykin, Khim. Geterotsikl. Soedin., 180 (1969).
- 8. P. M. Kochergin, M. V. Povstyanoi, B. A. Priimenko, and V. S. Ponomar', Khim. Geterotsikl. Soedin., 129 (1970).
- 9. A. Pinner, Ber., 35, 4131 (1902).
- 10. N. Yamada and Y. Takahashi, Japanese Patent No. 263; Chem. Abstr., 66, 85,793 (1967).
- 11. J. Kawakami, French Patent No. 1,551,851; Referativnyi Zh. Khim., 7N382 (1970).
- 12. J. Kawakami, British Patent No. 1,134,580; Chem. Abstr., 70, 57,853 (1969).
- 13. J.D. Lamb and F. L. Pyman, J. Chem. Soc., 125, 706 (1924).
- 14. M. V. Povstyanoi and P. M. Kochergin, Khim. Geterotsikl. Soedin., 1121 (1971).
- 15. J. Zajaczkowska and M. Eckstein, Diss. Pharm. Pharmacol., <u>20(3)</u>, 287 (1968); Chem. Abstr., <u>70</u>, 381 (1969).